Assignment for Semester- I to Semester-IV (2015-2018, 2016-2019, 2017-2020,2018-2021 & 2019-2022) Physics (GE)

Department of Physics
P. K. Roy Memorial College
Dhanbad

<u>DEPARTMENT OF PHYSICS, P. K. ROY MEMORIAL COLLEGE, DHANBAD B.Sc. PHYSICS (GE) SEMESTER-I (2015-18, 2016-19, 2017-20, 2018-21, 2019-22) ASSIGNMENT FOR INTERNAL EXAMINATION PHY-G.E.-1. T. MECHANICS</u>

Full Marks: 10

Answer any TWO questions of the following

1. Define scalar triple product and vector triple product. Show that scalar triple product of vectors is equal to the volume of a parallelopiped whose sides are given by three vectors.

Or

State and prove the Kepler's laws of planetary motion

- 2. Discuss the general method of solving second order homogeneous differential equation with constant coefficients.
- 3. Deduce an expression for kinetic and potential energy for a particle executing simple harmonic motion (S.H.M.). Show that total energy in S.H.M. remains constant.
- 4. Using Lorentz transformation equations discuss the concept of time dilation and length contraction.

Or

Deduce the relation $Y = 3K(1-2\sigma)$, where Y, K and σ are Young's modulus, bulk modulus and Poisson's ratio respectively.

------xxxxxxxxx------

DEPARTMENT OF PHYSICS, P. K. ROY MEMORIAL COLLEGE, DHANBAD B.Sc. PHYSICS (GE) SEMESTER-I (2015-18, 2016-19, 2017-20, 2018-21, 2019-22) ASSIGNMENT FOR INTERNAL EXAMINATION

PHY-G.E.-1. P. (PRACTICAL) Full Marks: 05

Give the underlying theory, necessary diagram, procedure and relevant precautions of any one of the following experiments:

- 1. Measurements of length (or diameter) using vernier caliper, screw gauge and travelling microscope.
- 2. Determination of the Young's modulus of a wire by Optical Lever method.
- 3. Determination of value of acceleration due to gravity \mathbf{g} by Bar Pendulum.
- 4. Determination of value of acceleration due to gravity g Kater's Pendulum.

-----XXXXXXXXXX-------

DEPARTMENT OF PHYSICS, P. K. ROY MEMORIAL COLLEGE, DHANBAD B.Sc. PHYSICS (GE) SEMESTER-II (2015-18, 2016-19, 2017-20, 2018-21, 2019-22) ASSIGNMENT FOR INTERNAL EXAMINATION PHY-G.E.-2. T. ELECTRICITY & MAGNETISM

Full Marks: 10

Answer any TWO questions of the following

- 1. State and prove Gauss's law in electrostatics.
- 2. Define electric potential. Derive electric potential at a point due to a point charge.
- 3. State Biot-Savart's law and apply it to find the expression for magnetic field at a point due to a straight current carrying conductor.
- 4. Establish Maxwell's relations for electromagnetic field and explain their physical meaning.

------XXXXXXXXXX-------

DEPARTMENT OF PHYSICS, P. K. ROY MEMORIAL COLLEGE, DHANBAD
B.Sc. PHYSICS (GE) SEMESTER-II (2015-18, 2016-19, 2017-20, 2018-21, 2019-22)

ASSIGNMENT FOR INTERNAL EXAMINATION
PHY-G.E.-2. P. (PRACTICAL)

Full Marks: 05

Give the underlying theory, necessary diagram, procedure and relevant precautions of any one of the following experiments:

- 1. Determination of a low resistance by Carey Foster's Bridge.
- 2. Verification of Thevenin's theorem.
- 3. Verification of Norton's theorem.
- 4. Verification of maximum power transfer theorem.

EPARTMENT OF PHYSICS, P. K. ROY MEMORIAL COLLEGE, DHANBAD B.Sc. PHYSICS (GE) SEMESTER-III (2015-18, 2016-19, 2017-20, 2018-21, 2019-22) 2016-19, 2017-20, 2018-21, 2019-22)

ASSIGNMENT FOR INTERNAL EXAMINATION PHY-G.E.-3. T. THERMAL PHYSICS AND STATISTICAL MECHANICS

Full Marks: 10

Answer any TWO questions of the following

- 1. Describe first law of thermodynamics and use it to establish a relation between C_P and C_V .
- 2. Describe Carnot's cycle and obtain an expression for the efficiency of an ideal heat engine working between two temperatures T_1 and T_2 .
- 3. Derive Planck's law of black body radiation. Use this law to establish Wien's displacement law.
- 4. Deduce Maxwell-Boltzmann statistical distribution law clearly explaining the underlying assumptions

<u>DEPARTMENT OF PHYSICS, P. K. ROY MEMORIAL COLLEGE, DHANBAD</u> <u>B.Sc. PHYSICS (GE) SEMESTER-III (2015-18, 2016-19, 2017-20, 2018-21, 2019-22)</u> <u>ASSIGNMENT FOR INTERNAL EXAMINATION</u>

PHY-GE-3. P. (PRACTICAL)

Full Marks: 05

Give the underlying theory, necessary diagram, procedure and relevant precautions of any one of the following experiments:

- 1. Measurement of Planck's constant using black body radiation.
- 2. Determination of the coefficient of thermal conductivity of Cu by Searle's Apparatus.
- 3. Determination of the coefficient of thermal conductivity of Cu by Angstrom's Method.
- 4. Determination of the coefficient of thermal conductivity of a bad conductor by Lee and Charlton's disc method.

------xxxxxxxxxxx------

<u>DEPARTMENT OF PHYSICS, P. K. ROY MEMORIAL COLLEGE, DHANBAD</u> <u>B.Sc. PHYSICS (GE) SEMESTER-IV (2015-18, 2016-19, 2017-20, 2018-21, 2019-22)</u> <u>ASSIGNMENT FOR INTERNAL EXAMINATION</u> <u>PHY-G.E.-4. T. WAVES & OPTICS</u>

Full Marks: 10

Answer any TWO questions of the following

1. What are beats? Explain formation of beats analytically.

Or

Explain group velocity and phase velocity. Establish a relation between them in a dispersive medium.

- 2. What is interference of light? Describe Newton's ring experiment with suitable figures. How wavelength of monochromatic light is determined using Newton's rings?
- 3. Analyze a square wave using Fourier's theorem.
- 4. Discuss diffraction pattern produced by a narrow single slit.

Or

What is polarization of light? Describe with theory production and detection of plane polarized light.

<u>DEPARTMENT OF PHYSICS, P. K. ROY MEMORIAL COLLEGE, DHANBAD</u>

<u>B.Sc. PHYSICS (GE) SEMESTER-IV (2015-18, 2016-19, 2017-20, 2018-21, 2019-22)</u>

<u>ASSIGNMENT FOR INTERNAL EXAMINATION</u>

PHY-GE-4. P. (Practical)

Full Marks: 05

Give the underlying theory, necessary diagram, procedure and relevant precautions of any <u>one</u> of the following experiments:

- 1. Determination of the refractive Index of the material of a prism using sodium light.
- 2. Determination of wavelength of sodium light using Newton's Rings.
- 3. Determination of the wavelength of Laser light using diffraction of single slit.
- 4. Determination of the resolving power of a plane diffraction grating.